Characterization of L-carnitine transport by rat kidney brush-border-membrane vesicles.

نویسندگان

  • B Stieger
  • B O'Neill
  • S Krähenbühl
چکیده

In the presence of a 100 mM Na+ gradient, transport of L-carnitine into rat renal brush-border-membrane vesicles was linear over 30 s and showed an overshoot at 5 min. The uptake of L-carnitine was clearly less active in the presence of other cations such as Li+, K+, Cs+ or choline. In the presence of a Na+ gradient, L-carnitine uptake after 20 s was much higher for chloride as an anion than for SCN-, NO3-, gluconate or SO4(2-). In comparison with conditions with inside positive or no membrane potential, transport was higher in vesicles with an inside negative membrane potential, suggesting an electrogenic mechanism. The kinetic characterization of the Na(+)-dependent portion of L-carnitine transport revealed two transport systems with Km values of 17.4 +/- 3.9 microM and 15.0 +/- 6.0 mM, respectively. The transport could be inhibited in a concentration-dependent fashion by structural analogues such as butyrobetaine, L-acetylcarnitine, trimethyl-lysine and D-carnitine, but not by L-arginine or glycinebetaine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-proline transport by newborn rat kidney brush-border membrane vesicles.

The transport of L-proline was studied in brush-border membrane vesicles isolated from the kidneys of newborn rats. In contrast with the rapid initial uptake with an 'overshoot' observed in adult vesicles, uptake by the newborn vesicle was slow, showed no 'overshoot', and proline continued to accumulate at a time when the adult vesicle had already equilibrated. L-Proline transport in the newbor...

متن کامل

The plasma carnitine concentration regulates renal OCTN2 expression and carnitine transport in rats.

Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untrea...

متن کامل

L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2.

Maternofetal transport of l-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that l-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparen...

متن کامل

Studies on the orientation of brush-border membrane vesicles.

Orientation of rat renal and intestinal brush-border membrane vesicles was studied with two independent methods: electron-microscopic freeze-fracture technique and immunological methods. With the freeze-fracture technique a distinct asymmetric distribution of particles on the two membrane fracture faces was demonstrated; this was used as a criterion for orientation of the isolated membrane vesi...

متن کامل

Sulphate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex.

Uptake of SO(4) (2-) into brush-border membrane vesicles isolated from rat kindey cortex by a Ca(2+)-precipitation method was investigated by using a rapid-filtration technique. Uptake of SO(4) (2-) by the vesicles was osmotically sensitive and represented transport into an intra-vesicular space. Transport of SO(4) (2-) by brush-border membranes was stimulated in the presence of Na(+), compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 309 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995